Park City Mathematics Institute
Secondary School Teachers Program
Summer 2011
Week 2: Monday Zome Building

2011 Index Page
2011 Photos
2011 Roster
Class Notes
    Morning Shorts
Daily Schedule
Getting Started
Participant Outreach Activities
Project Abstracts

Update Contact Info
Send Note: Suzanne & Richard
Site Map
Blog List

Working Groups
Reasoning from Data and Chance
Exploring Discrete Math
Investigating Geometry
Implementing Lesson Study
Visualizing Functions
Learning about Topology

Remote Site
E-table - McAllen, Texas

username/password required
Contact List
E-mail Addresses
Morning Announcements
Portrait Photos

Ning: PCMI 2011


The large Zometool construction for 2011 is a compound of a 120-cell and a Gosset polytope projected into three dimensions. The 120-cell is a four dimensional analog of a dodecahedron, a longtime PCMI favorite []. The Gosset polytope is an eight dimension structure important in geometry and algebra [].

Why combine these two things, which don't even live in the same dimension? You may know that the dodecahedron and icosahedron are duals: put a vertex in each face of one polyhedron, connect adjacent vertices, and you get the other. A Zome creation showing concentric dodecahedron and icosahedron of roughly the same diameter is an inspiration for what we made.

The 120-cell is dual to a four dimensional polytope known as the 600 cell. A projection of the 600 cell into three dimensions can be built in the Zome system, but the model is dense to the point of obscuring structure. The Gosset polytope, however, can be built from two copies of the 600-cell and has a "nicer" projection into three dimensions. The large compound shape shows traits of both structures, e.g., the blue tunnels of the 120-cell and the parallel planes in the Gosset polytope, while illustrating duality. In fact, the compound dodecahedron and icosahedron structure appears three times in layers of our primary 2011 giant Zome build, created under the guidance and enthusiasm of ZomeTool "chief visionary officer" Paul Hildebrandt.

--Brian Hopkins

click on small photo to view a larger version


Unless otherwise indicated all of these materials are licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

IAS/PCMI YouTube ||  PCMI@MathForum Home || IAS/PCMI Home

© 2001 - 2020 Park City Mathematics Institute
IAS/Park City Mathematics Institute is an outreach program of the Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540.
Send questions or comments to: Suzanne Alejandre

With major funding from Math for America

With generous support from Robert and Lynn Johnston