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Math block 1: Coins I

Take 1 or 2 (with 9 coins)

• Setup: 9 coins

• Legal moves: in each turn, take 1 or 2 coins

• Winner: takes the last coin

After explaining the game, ask the teachers to keep the following questions
in mind: Does the first or second player have an advantage? Stronger, can
the first or second player always win? (You may choose to delay the second
question.) Lest anyone start with a general analysis, encourage them to begin
by playing several rounds of the game.

Answer: The second player can always win (with 9 coins). His goal is to
always leave a multiple of 3 stones. That is, if the first player takes 1, he takes
2; if she takes 2, he takes 1.

A common intermediate step is “getting down to” 3 or 4. In such cases, you
may suggest that students start with 6 stones instead of 9. A frequent error is
to focus on even and odd numbers of coins. False conclusions can be challenged
by playing the game against a teacher—play to win! Even if you go first, the
second player may make an error that allows you to leave him with a multiple
of three. Play no more than one game with any group in a “visit,” lest they
figure out the winning strategy from your play rather than their analysis.

In describing the winning strategy, teachers may talk about taking “the
opposite” number of coins. If so, then ask them to define opposite. The most
succinct description, when presenting your opponent with a multiple of 3 coins,
is to counter taking x coins by taking 3 � x, leaving the next smaller multiple
of 3.
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Some pairs and tables may analyze the initial game quickly. Assign the
following variations in order, as necessary to keep everyone engaged.

Take 1 or 2 (with 13 coins)

• Setup: 13 coins

• Legal moves: in each turn, take 1 or 2 coins

• Winner: takes the last coin

Give the team four more pennies. Now first player can win by taking 1 coin
and then following the multiple of 3 analysis above. Ideally, each group gets
through this case and perhaps the general number of coins described next.

With 9 and 13 coins correctly analyzed, ask the teachers to consider an
arbitrary number of coins n. If n ⌘ 0 mod 3, then the second player can win
as with 9 coins above. If n 6⌘ 0 mod 3, then the first plater can win by taking
n mod 3 coins and responding to the second player’s moves as above.

The following two variations need not be considered by all participants.

Misère Take 1 or 2 (with 13 coins)

• Setup: 13 coins

• Legal moves: in each turn, take 1 or 2 coins

• Loser: takes the last coin

Switching who wins and loses creates the misère version of a game, which can
be more di�cult to analyze. This one, however, is equivalent to the standard
version of the 12 coin game: After the second player wins the 12 coin game, his
opponent must take the final “poison” coin.

Take 2 or 3

• Setup: n coins

• Legal moves: in each turn, take 2 or 3 coins

• Winner: ???

This variation is not often needed. Teachers playing this should think about
how to modify the notion of winning, since 1 coin could be left. When neither
player can take the last coin, one might introduce a “draw” which is better than
losing and worse than winning. A more standard approach is to give the win to
whoever makes the last legal move (whether that leaves 0 or 1 coins). With this
final convention, the second player can win with n ⌘ 0, 1 mod 5 (respond to x

with 5� x), while the first player can win when n ⌘ 2, 3, 4 mod 5 by removing
2 or 3 coins to get to 0 or 1 mod 5 and playing as before.
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Near the end of the block, call the room together and explain the following
game from the early reality show Survivor Thailand.

Take 1, 2, or 3 (with 21 coins)

• Setup: 21 coins

• Legal moves: in each turn, take 1, 2, or 3 coins

• Winner: takes the last coin

Ask for two volunteers to play, with the other participants encouraging them
and o↵ering advice. If an overhead projector or document camera is available,
then place 21 coins (in no order), have players stand on opposite sides, and move
1, 2, or 3 coins to their side at each turn so everyone can see play progressing.
Otherwise, say what happens at each move, e.g., “Rita takes 2 coins leaving 14
total.” The game may be repeated a few times as necessary.

Player 1 can always win by taking 1 coin. After her opponent takes x coins
in his move, she responds by taking 4� x coins, always leaving him a multiple
of 4.

The 2002 television clip is available at http://www.criticalcommons.org/
Members/JJWooten/clips/survivor-21-flags. No one seems to demonstrate
any strategy until 6 flags remain.

Now introduce a visual representation to suggest the strategy. With an
overhead projector or document camera, arrange the coins in 5 groups of 4 with
1 left over. Otherwise, draw that arrangement on a chalkboard, whiteboard, or
pad of large paper on an easel.

Math Block 1 -  COINS 1 

 

 

 

 

 

Math Block 2 – Figurate Numbers 

 

 

Got this from:  http://danieldockery.com/b/2003/06/ 

 

Hexagonal numbers 
 
 

 
 

Note: Some participants may create a centered diagram, which 
produces different data.  Centered Hexagonal numbers -  
 

 
http://www.numbersaplenty.com/set/hex_number/ 

Draft 7/16/15 

Ask how this arrangement could assist players. Introduce the terminology and
notation 21 ⌘ 1 mod 4. Ask for the analogous visual arrangements for the
“take 1 or 2” games and how to express the solutions for that game in modular
arithmetic.

These games are all restricted versions of an important combinatorial game
called Nim which was named and fully analyzed in 1901. It allows for multiple
piles of coins and the winning strategy depends on binary representations of
numbers.
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Math Block 2: Pythagorean Triples

Following up from the first block, start with addition and multiplication tables
modulo 3 as a tool.

Pythagorean triples are integer solutions for a2 + b

2 = c

2. Ask teachers for
examples. As you record them, separate the primitive ones (where there is no
factor common to all three values). In this block, participants will examine
arithmetic properties of primitive Pythagorean triples. A complete list of such
up with c  100 is given on the next page, which can be copied as a handout.

Ask participants to look for patterns in the data. The following hold for the
16 triples provided; our work will be to show that they hold for all primitive
Pythagorean triples.

1. One of the legs a, b is even. The other leg and c are odd.

2. One leg is a multiple of 3.

3. One leg is a multiple of 4.

4. One side length is a multiple of 5.

5. The hypotenuse is 1 more than a multiple of 4.

Verifying all of these requires modular arithmetic. Details are included in the
following document, “Pythagoras on the Jersey Shore,” which also documents
another PCMI-related professional development program. The article appears
in a monograph celebrating the centennial of AMTNJ, New Jersey’s NCTM
a�liate.

In later discussions, it is worth mentioning that rules such as “odd plus odd
is even” is more succinctly stated as modulo 2 arithmetic. Also, some moduli
have “nontrivial zero divisors,” e.g., 2 · 2 ⌘ 0 mod 4, which would complicate
the methods of high school algebra. Here, the equation gives a situation where
a

2 ⌘ 0 mod 4 but a 6⌘ 0 mod 4.
Participants sometimes find other patterns, often for cases where there is a

constant di↵erence between the longest leg and hypotenuse, especially c = b+1
and c = b + 2. The references in the article includes sources where additional
patterns are explored.

Sometimes there are incorrect conjectures, which are still worthwhile peda-
gogically. For many of the given triples, one side is a prime, but this fails for
(33, 56, 65) where each side is composite. One conjectures here was if a leg is a
multiple of 5, then the hypotenuse is prime: This is true for all 7 occurrences in
the 16 given triples, but fails for (119, 120, 169). Points worth making: A single
counterexample su�ces to disprove a conjecture, and the smallest counterex-
ample may involve larger numbers.
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Primitive Pythagorean triples

with hypotenuse less than 100

(3, 4, 5)

(5, 12, 13)

(8, 15, 17)

(7, 24, 25)

(20, 21, 29)

(12, 35, 37)

(9, 40, 41)

(28, 45, 53)

(11, 60, 61)

(33, 56, 65)

(16, 63, 65)

(48, 55, 73)

(13, 84, 85)

(36, 77, 85)

(39, 80, 89)

(65, 72, 97)
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A residential teacher professional development program with strong ties to the 
Association of Mathematics Teachers of New Jersey was held in Ocean Grove, New 
Jersey, from 2007 to 2011. We begin by describing the background and format of this 
Institute for New Jersey Mathematics Teachers, including its ties to the Institute for 
Advanced Study. For most of the article, we explore Pythagorean triples with modular 
arithmetic, part of the 2010 content. 
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INTRODUCTION 
For five years, the Institute for New Jersey Mathematics Teachers (INJMT) was held in 
Ocean Grove, New Jersey. Originally called the Ocean Grove Mathematics Institute, 
INJMT was a residential teacher professional development program inspired by the 
Institute for Advanced Study / Park City Mathematics Institute (IAS / PCMI) and its 
practices of group learning and content-based professional development. This article 
serves to document the program and give an example of the mathematic content 
covered. 
 INJMT traces back to the Summer School Teachers' Program of PCMI, a major 
annual institute for some 250 mathematics professionals focused on a different research 
theme each year. To support teachers throughout the school year, PCMI has established 
the New Jersey Professional Development and Outreach group (NJPDO). The NJPDO 
expanded to include teachers who had not participated in PCMI, and is still active. INJMT 
arose from the desire to provide New Jersey teachers an experience similar to PCMI, 
locally and on a smaller scale. The program enjoyed strong connections to the 
Association of Mathematics Teachers of New Jersey (AMTNJ). More details are given in 
the first section of this paper. 
 The trademark of PCMI and INJMT teacher professional development is a focus 
on mathematical content and group discovery learning in groups with minimal direct 
instruction. Although it is difficult to replicate that style in static prose, the second section 
gives an example from the 2010 program, Explorations in Geometry! 
 

INSTITUTE FOR NEW JERSEY MATHEMATICS TEACHERS 

A proper history of INJMT requires explanation of a few connected professional 
development programs. Although INJMT is presently inactive for want of funding, the 
programs described here are still active; teachers interested in them are encouraged to 
participate. Recording the format of INJMT offers tips for designers of professional 
development programs. We also highlight the connections between AMTNJ and INJMT. 
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Institute for Advanced Study and the Park City Mathematics Institute 
Founded in 1930, the Institute for Advanced Study is "one of the world's leading centers 
for theoretical research and intellectual inquiry." Those who have worked at the 
Princeton facility (independent of Princeton University) include Albert Einstein, John 
Nash, and Freeman Dyson, among 33 Nobel Laureates and 38 Fields Medalists (a 
comparable honor for mathematicians). 
 In 1991, the University of Utah sponsored a Regional Geometry Institute in Park 
City, Utah, bringing together university researchers, graduate students, undergraduates, 
and teachers for three weeks of interconnected programs. IAS assumed sponsorship of 
the institute starting in 1993. 
 The Summer School Teachers Program involves some 60 teachers each year 
(always with representation from the NJPDO). Currently there is an emphasis on the 
Common Core State Standards in Mathematics and a partnership with Math for America 
(Clemens, 2012). 
 Among the many teacher activities at PCMI, we detail here the "morning math" 
course, facilitated by the Education Development Center. For two hours each day, 
teachers work in groups of six on a series of open-ended questions which weave 
together several mathematical topics. The approach encourages exploration, 
collaboration, and the work of making connections and constructing knowledge. 
Classroom-wide discussions occur only once or twice per hour, typically highlighting a 
participant's interesting approach for the larger group or summarizing a theme. There is 
almost no direct lecture instruction. While this pedagogical approach is sometimes 
unfamiliar or even uncomfortable for teachers, by the end of each institute the morning 
math class is uniformly rated as the teachers' favorite activity. These PCMI problem sets 
dating back to 2001 are freely available (http://mathforum.org/pcmi/hstp/ 
problemsets.html). A formal publication, including the philosophy of this approach and 
tips for implementation, is in process. A related text was published by Al Cuoco of EDC in 
2005.  

New Jersey Professional Development and Outreach group 
Professional Development and Outreach groups were founded to provide academic 
year support and activities for teachers who had attended PCMI. Many have expanded 
to include area teachers who have not attended the Utah program. 
 The NJPDO traces back to a group started in 2001 by David Keys at Rutgers 
University Newark. In early 2003, Saint Peter's University (College at the time) became 
the PDO sponsor and the author started working as the facilitator. Another PDO 
associated with Rider University also fed into the current group. 
 The NJPDO is centered on mathematical content explored via interactive group 
learning, with many sessions led by teachers. We meet at least four times per 
academic year, with midday sessions held on Saturday or Sunday. Most meetings are 
held at Saint Peter's University in Jersey City, and for the past few years Peddie 
School in Hightstown has hosted a spring meeting. Hands-on sessions on various 
mathematical content are led by teachers, the author, or by guests, who have included 
George Hart, Joseph O'Rourke, and Philip Mallison. We also enjoy "field trips" whose 
destinations have included the Liberty Science Center, the new National Museum of 
Mathematics, New York University's Institute for the Study of the Ancient World for an 
exhibit of Babylonian mathematical tablets, the Brooklyn Academy of Music for the 
Philip Glass opera Kepler, and the Museum of Chinese in America for an exhibit of 
puzzles, where NJPDO teachers helped the museum staff develop educational 
materials for schoolchildren visiting the exhibit. 
 Over one hundred teachers have participated in NJPDO activities, from across 
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New Jersey, New York City, Philadelphia, and even Ontario. Although the Ocean 
Grove program described in this article has ceased for the time being, the NJPDO still 
offers active programming to a vibrant community of teacher-leaders. We are always 
glad for more teachers to join us. 

Details of Ocean Grove meetings 
INJMT was held in the Lillagaard Bed and Breakfast near the boardwalk in Ocean 
Grove. The residential aspect of the institute was important, to allow participants to 
focus on the experience and spend time with each other; it was more like a retreat than 
work. Room and board were covered, and participants also received a stipend. 
Institutes were held mid-August; specific dates and programs are listed below. 

12 - 17 August 2007, Numbers! From Common Divisors to Cryptography 
10 - 15 August 2008, Take the Number Train! Visualizing Pascal, Fibonacci, and More 
16 - 21 August 2009, It All Adds Up! 
15 - 20 August 2010, Explorations in Geometry! 
15 - 19 August 2011, Math & Games 

 A typical institute day started with breakfast downstairs, two morning sessions 
usually held on the second floor porch, lunch that was ordered in, two afternoon 
sessions, free time for enjoying Ocean Grove and finding dinner in town, and a 
hands-on evening session. The mathematical sessions were centered on open-ended 
problems explored in three groups of four teachers each. The facilitator (the author) 
would sometimes speak to the entire group to introduce or summarize a topic, but 
primarily worked individually with groups as questions arose, offering few answers and 
encouraging continued exploration. Evening activities included ZomeTools, Cuisenaire 
rods, the card game Set, slide-together geometric constructions, origami, MasterMind 
tournaments, combinatorial games, and a "math walk" through the neighborhood. 
 While the primary focus of INJMT was mathematical content for participants' 
own enrichment and life-long learning, several teachers reported modifying material 
they had learned for use in their classrooms. The format of working collaboratively with 
colleagues on open-ended problems with minimal direct instruction also had a strong 
impact. Teachers reported better understanding of their own students working on new 
material, a sense of empowerment as they constructed new knowledge, and better 
skills at facilitating group work in their own classrooms. 

Connections with AMTNJ  
While most funding for INJMT came from IAS / PCMI, AMTNJ supported the Ocean 
Grove program financially from 2008 to 2011. Each year, several of the twelve 
participants were AMTNJ members, often officers. In addition to mathematical 
enrichment, AMTNJ benefited by recruiting several new members and even officers 
from other INJMT participants. The current roster of active NJPDO teachers enjoys a 
broad overlap with AMTNJ membership, and hopefully the organizations will continue 
to collaborate and thrive together. 

PYTHAGOREAN TRIPLES 

A Pythagorean triple consists of three positive integers (a,b,c) satisfying a2 + b2 = c2. 
The name comes from the geometric interpretation of these values being the side 
lengths of right triangles, so that their defining equation matches the consequent of the 
Pythagorean theorem. Following that connection, we will refer to a and b as the legs 
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and c as the hypotenuse. 
 We will restrict attention to primitive Pythagorean triples, those where a, b, c 
share no common factor greater than one. For example, the triple (6, 8, 10) is not 
primitive, since each integer a multiple of 2 (even). The primitive Pythagorean triples 
with hypotenuse less than 100 are given in Table 1. 

Table 1: The sixteen primitive Pythagorean triples with hypotenuse less than 100. 
 (3, 4, 5) (5, 12, 13) (8, 15, 17) (7, 24, 25) 
 (20, 21, 29) (12, 35, 37) (9, 40, 41) (28, 45, 53) 
 (11, 60, 61) (33, 56, 65) (16, 63, 65) (48, 55, 73) 
 (13, 84, 85) (51, 68, 85) (39, 80, 89) (65, 72, 97) 

At the 2010 INJMT, teachers began this topic by making conjectures based on 
this list, which led to investigations of general results. The following discussion mirrors 
the explorations of those twelve teachers. 

Parity 
One of the first observations from Table 1 concerns the parity of a, b, c: In each case, 
one leg is odd, one even, and the hypotenuse is odd. Is this always the case, or could 
there be a larger primitive Pythagorean triple not following this pattern? Any finite 
amount of data is insufficient to resolve this question, calling for general techniques. 
Conjectures often follow from evidence, while proof requires careful logical argument 
applicable to all possible cases. 
 By the definition of primitive Pythagorean triples, it is not possible for all three 
numbers to be even. Two other cases are ruled out by basic facts about even and odd 
numbers, summarized here. 

Parity Results: An even number squared is even; an odd number squared 
is odd. The sum of two even numbers is even, the sum of two odd numbers 
is even, and the sum of an even and an odd number is odd. (Compare with 
Table 2 below). 

 
 From these facts, it is not possible for all three numbers to be odd, since then 
a2, b2 and c2 would all be odd but a2 + b2 is even. Similarly, it is impossible for two of 
the numbers to be even and one odd. 
 We are left with the case that two of the numbers are odd and one is even. But 
the evidence suggests something more specific; in every case we have seen, the 
hypotenuse is odd. Is it possible to have both legs odd and the hypotenuse even? The 
parity results do not rule this out. 
 In order to address this case, we recast the parity results in terms of modular 
arithmetic, which will generalize in helpful ways. Arithmetic modulo k looks just at the 
remainders when dividing by k,   and   is   thus   restricted   to   the   values   0,   1,  …,   k-1. A 
common example is "clock arithmetic," such as 5 hours after 10 o'clock is not 15 
o'clock (at least in the civilian world), rather 3 o'clock, which can be determined by 
adding 10 and 5 modulo 12. 
 An even number is a multiple of two, and an odd number can be described as 
an integer with remainder one when divided by two. All of the parity results mentioned 
above are contained in the following addition and multiplication tables for arithmetic 
modulo 2, Table 2. 
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Table 2: Addition and multiplication modulo 2. 

 

2 + 0 1 

0 0 1 

1 1 0 

 

In order to consider whether both legs in a Pythagorean triple can be odd, one 
can consider the a2 + b2 = c2 equation reduced modulo 4, whose arithmetic is shown in 
Table 3. 

Table 3: Addition and multiplication modulo 4. 

 

4 + 0 1 2 3 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 

 

If a and b are odd, then we see in Table 3 that both a2 and b2 are 1 modulo 4. 
The sum a2 + b2 is then 2 modulo 4. Looking on the diagonal of the modulo 4 
multiplication table, nothing squared is 2. Therefore a2 + b2 = c2 with a and b odd has 
no solution modulo 4. A solution to a2 + b2 = c2 in normal integers would reduce to a 
true statement modulo 4, so this reasoning shows that there is no Pythagorean triple 
with both legs odd. 
 Having ruled out every other possibility, we conclude that every primitive 
Pythagorean triple has one odd leg, one even leg, and an odd hypotenuse. 

Multiples of 3, 5, and 4 
There are more patterns evident from the data in Table 1. In each case, the even leg is 
moreover a multiple of 4. Also, one leg is a multiple of 3, and some number is a 
multiple of 5. How can we argue that these events occur for any primitive Pythagorean 
triple, no matter how large? 
 As the reader may guess by now, we will consider other moduli. Table 4 shows 
the entire arithmetic of integers modulo 3. 

 

2 x 0 1 

0 0 0 

1 0 1 

4 x 0 1 2 3 

0 0 0 0 0 

1 0 1 2 3 

2 0 2 0 2 

3 0 3 2 1 
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Table 4: Addition and multiplication modulo 3. 

 

3 + 0 1 2 

0 0 1 2 

1 1 2 0 

2 2 0 1 

 

Looking down the diagonal of the multiplication table, we see that any number 
squared is either 0 or 1 modulo 3. Notice also that only 02 gives 0. In the normal setting 
of all integers, this means that if an integer n has n2 as a multiple of 3, then n must 
itself be a multiple of 3. Reducing the relation a2 + b2 = c2 modulo 3 therefore has only 
a few possibilities. It could reduce to 0 + 0 = 0, but in that case, a, b, c are all multiples 
of 3, violating the definition of primitive. It is impossible for both a2 and b2 to be 1, since 
their sum 2 is not a square modulo 3. This leaves only 0 + 1 = 1 or 1 + 0 = 1 as 
possible reductions. In both cases, the 0 on the left hand side of the equations 
indicates that one of the legs is a multiple of 3. 
 The argument that one of the numbers in a Pythagorean triple must be a 
multiple of 5 follows similarly from modulo 5 arithmetic; see Table 5.  

Table 5: Squares modulo 5. 

 

n 0 1 2 3 4 

n2 0 1 4 4 1 

 

The squares modulo 5 are 0, 1, and 4. Again, only 02 gives 0, so if n2 is a 
multiple of 5, then n must be a multiple of 5. Possible reductions of a2 + b2 = c2 modulo 
5 are 0 + 0 = 0 (ruled out by primitivity), 0 + 1 = 1, 1 + 0 = 1, 1 + 4 = 0, and 4 + 1 = 0. 
Each of these includes a single 0, which means that one of the numbers must be a 
multiple of 5. 
 The same approach does not quite work for 4. For instance, even though 12 + 
22 ≠  32 in normal integers, we see from Table 2 that 12 + 22 = 1 + 0 = 1 = 32 mod 4. The 
crux of the problem is that 22 = 0 mod 4. This is where modular arithmetic can be 
strange: nonzero numbers can multiply together to give 0 in a composite modulus. This 
makes algebra in some modular arithmetic very different, for instance: just because the 
product of two expressions is 0 modulo a composite, one may not conclude that one or 
the other of them must be 0. 
 (Lest the reader think that this mathematical structure is too bizarre to be 
meaningful, realize that modular arithmetic is a foundational tool for computer science 
and information theory. The encryption used in every secure internet transaction is built 

3 x 0 1 2 

0 0 0 0 

1 0 1 2 

2 0 2 1 
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on prime numbers and modular arithmetic. A good introduction to these applications is 
Kirtland (2001).) 

The key insight for showing that each primitive Pythagorean triple contains a 
leg that is a multiple of 4 is to look at arithmetic modulo 8. (This may seem like a leap, 
but some of the 2010 NJPDO teachers came up with this idea.)  

Table 6: Squares modulo 8. 

 

n 0 1 2 3 4 5 6 7 

n2 0 1 4 1 0 1 4 1 

 

As shown in Table 6, each odd number squares is 1 modulo 8, and an even 
number squared is either 0 or 4 modulo 8. Since one leg of a primitive Pythagorean 
triple must be odd and the other even, the only possible reduction of a2 + b2 = c2 
modulo 8 is either 0 + 1 = 1 or 1 + 0 = 1 (it is impossible to have the left hand side be 1 
+ 4 or 4 + 1 since 5 is not a square modulo 8). Since each possibility includes a single 
0, from Table 6 we know the number being squared is either 0 or 4 modulo 8. That is, it 
is a multiple of 4. 

Discussion and Further Reading 
We summarize our work in the following theorem. 

Theorem: If a, b, c are positive integers without a common factor greater 
than 1 that satisfy a2 + b2 = c2, then: 
i) one of a, b is odd, and the other is a multiple of 4;  
ii) one of a, b is a multiple of 3;  
iii) c is odd; and  
iv) one of a, b, c is a multiple of 5. 
 

Are there other divisibility results for primitive Pythagorean triples? The 
well-known triple (3, 4, 5) shows that there can be no larger divisor guaranteed for 
every triple. Also, examples from Table 1 show that any combination of the three 
guaranteed divisors is possible: (5, 12, 13) has a leg divisible by 3 and 4, then (8, 15, 
17) has a leg divisible by 3 and 5, while (20, 21, 29) has a leg divisible by 4 and 5, and 
finally (11, 60, 61) has a leg divisible by all three necessary divisors. 
 There are many more patterns extant in primitive Pythagorean triples. A very 
accessible source is a book by Sierpinski (1972), better known for a fractal. More 
recent treatments connect Pythagorean triples to matrices (Hall, 1970) and complex 
numbers (Kerins et al., 2003, which also describes more about the PCMI teachers 
program). 
 While INJMT is presently defunct, its impact continues through the classroom 
practice of the program alumni and the ongoing teacher professional development 
work of IAS / PCMI, NJPDO, and of course AMTNJ. 
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Math Block 3: Coins II

Review with the participants of the Take 1 or 2 game with 13 coins, then have
them analyze the following game which has only a slight variation in the rules.

Daisy

• Setup: 13 coins in a tight circle (so that adjacent coins touch)

• Legal moves: in each turn, take any one coin or any two touching coins

• Winner: takes the last coin

Surprisingly, the adjacency requirement for taking pairs makes it a very
di↵erent game.

For any number of stones, the second player can always win using a sym-
metric technique, an example of “strategy stealing.” The first player takes 1 or
2 adjacent stones from the circle. The second player should remove 1 or two
2 at the opposite side of the circle in order to leave two isolated arcs having
the same number of stones. (For the 13 coin game, in response to 1 or 2 being
removed, player 2 should take the opposite 2 or 1, respectively, leaving two arcs
of 5 stones each.) Then, whatever player 1 does in one arc, player 2 repeats
in the other arc, as if there were a mirror on the board. This guarantees that
player 2 will make the last legal move.

It is rare that teachers find this winning strategy. When you play, do play
to win (see the notes below should you go first), but try not to be too obvious
when mirroring. One intermediate step might be to ask a pair what happens
should play come down to two arcs of 4 each.

 

Math Block4 - Coins #2 (Daisy & Kayles) 

Daisy 
 
 
 
 
 
 
Kayles 

 

Another hint could be to remind participants that one team in the 21 Flags
video mentioned “doing what they did” as a strategy; that did not work there,
but what could it mean in this game?

Participants are usually surprised at this “trick” and how di↵erent the solu-
tion is from the Coins I games.

Notice that after the first move, the circular aspect of the game is irrelevant—
the remaining stones might as well be in a row rather than around a circle.
Starting with stones in a row is the next game.

In actual play it is worth knowing how to win should player 2 not use this
mirror approach. For notation, we write 12 for the daisy after one petal is
removed leaving 12 adjacent petals. After player 1 moves, the game is at either
12 or 11. The strategy described for player 2 above is to then move to 5 + 5,
the two arcs of 5. (There are additional winning moves for player 2 from 11:
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8 + 1, 7 + 2, and 6 + 3, although how to proceed in each case is not as easily
described.)

The following table gives the moves that player 1 should make if player 2
does not leave 8+1, 7+2, 6+ 3, or 5+5 (if presented with one of these, player
1 should remove something from the larger pile, probably, and hope that player
2 doesn’t know a winning strategy). Play is presented down to a symmetric
state, where strategy stealing may be employed, or 1 + 2 + 3, which is another
winning state (verify this: in two turns you can leave your opponent with one
of the symmetric states 2 + 2, 1 + 1 + 1 + 1, or 1 + 1).

Player 2 from 12 or 11 Player 1 next Player 1

11, 6 + 5 5 + 5

10, 9, 6 + 4, 5 + 4 4 + 4

10 + 1, 9 + 2, 9 + 1 6 + 2 + 1 3 + 2 + 1 or 2 + 2 + 1 + 1

8 + 3, 8 + 2, 7 + 4, 7 + 3 4 + 3 + 2 3 + 3, 3 + 2 + 1, or 2 + 2 + 1 + 1

Kayles

• Setup: 1 coin, a space, and 11 coins in a tight row (so that adjacent stones
touch)

• Legal moves: In each turn, take any one coin or any two touching coins

• Winner: takes the last coin

 

Math Block4 - Coins #2 (Daisy & Kayles) 

Daisy 
 
 
 
 
 
 
Kayles 

 

The name Kayles comes from a 14c. English slaughter of the French quilles,
the term for bowling pins. The bowling idea is that you can knock over one pin
or two pins that are next to each other. The game was developed in 1907 by
Henry Dudeney.

While it might seem more natural to start with 13 coins in a row, that version
has a direct symmetry strategy allowing Player 1 to win: she should take the
middle coin, leaving 6 + 6, and then copy whatever her opponent does. The
Kayles game described is essentially the misère version of 11 coins in a row.

While understanding the mirror strategy helps analyze this game and par-
ticipants will probably have considered many possible states in thinking about
Daisy, this game is surprisingly complicated and there is no “nice” solution. Be-
low is a brute force solution of this case; a complete and rather intricate analysis
was done in 1956.

Player 1 can win, although it requires a very specific move: take either the 4th
or 8th pin of the 11, leaving 7 + 3 + 1. Player has 11 possible responses, which
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will require 4 possible moves from Player 1. The following table outlines all
possibilities down to “mirror” states where strategy stealing may be employed,
or a state described above.

Player 2 from 7 + 3 + 1 Player 1 next Player 1

7 + 3, 4 + 3 + 2 + 1 4 + 3 + 2

7 + 2 + 1, 6 + 3 + 1 6 + 2 + 1

7 + 1 + 1 + 1 3 + 2 + 1 + 1 + 1 3 + 2 + 1, 2 + 2 + 1 + 1,

six 1s, or four 1s

7 + 1 + 1, 3 + 3 + 3 + 1, 5 + 3 + 1 + 1,

5 + 3 + 1, 4 + 3 + 1 + 1, 3 + 3 + 2 + 1 3 + 3 + 1 + 1

In actual play, it is also helpful to know how to win as the second player
should your opponent not leave you with 7 + 3 + 1. (If you do face 7 + 3 + 1,
take one pin, perhaps from the largest pile, and hope for opponent error.)

Player 1 from 11 + 1 Player 2 next Player 2

11, 5 + 5 + 1 5 + 5

10 + 1, 9 + 1, 8 + 2 + 1, 7 + 2 + 1 6 + 2 + 1

9 + 1 + 1, 6 + 4 + 1 4 + 4 + 1 + 1

5 + 4 + 1 4 + 2 + 2 + 1 2 + 2 + 1 + 1

8 + 1 + 1, 6+3+1 3 + 3 + 1 + 1

Although it is worth learning these moves in order to e↵ectively beat partic-
ipants in this game, the major point is the contrast to the earlier games. The
games from Coins I have a simple strategy based on modular arithmetic, Daisy
has a surprisingly simpler strategy based on symmetry, but there is no elegant
solution to Kayles. Consider inviting teachers to compare and contrast winning
strategies for the di↵erent games. Some good points might include how small
di↵erences can have large e↵ects and the fact that not every question has a nice
answer.
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Math Block 4: The Josephus Problem

Start with an activity outside or in a clear indoor space where all participants
can stand in a circle. The facilitator stands in the center.

Duck, Duck, Die

• Have teachers count o↵ from 1 with the charge to remember their numbers.

• Starting with 1, the facilitator counts o↵ “duck, duck, die” (so participant
#3 is the first to die). Continuing around the circle, count only survivors
(so skip over #3 in all subsequent passes around the circle).

• The winner is the last teacher standing.

In practice, “dead” participants should put their arms over their chest or
sit—they will want to continue to watch the progression, but it needs to be
clear who should be skipped on subsequent rounds. When there are few living
participants, it can be helpful to have them raise their hands.

The history of the Josephus problem is in the participant handout by Ensley.
The question is to look for patterns in who is the final survivor for n people in
the circle. Also of interest is the second to last participant.

Decrease the number of people in the circle (at each stage, have the highest
numbered teachers leave the circle). Try to avoid going down one by one to keep
some surprise in the pattern. Do at least the total number and values around
one of the “breaks” such as 31 and 30; 21 and 20; or 14 and 13. Let participants
know that they will analyze the situation in groups, so someone should record
the data.

n 1 2 3 4 5 6 7 8 9 10

D(n) 1 2 2 1 4 1 4 7 1 4

n 11 12 13 14 15 16 17 18 19 20

D(n) 7 10 13 2 5 8 11 14 17 20

n 21 22 23 24 25 26 27 28 29 30

D(n) 2 5 8 11 14 17 20 23 26 29

n 31 32 33 34 35 36 37 38 39 40

D(n) 1 4 7 10 13 16 19 22 25 28

Back Inside

After three or so rounds, teachers return to their tables. They should fill in
other values ofD(n) (perhaps sharing some work across tables while also double-
checking results), although it is not necessary to go beyond the total number
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of participants. Foreshadowing an extension, you may suggest that they keep
track of the order of deaths for each n.

The primary goal is to determine the pattern in the “duck numbers” D(n).
The recursive pattern is

D(n) ⌘ D(n� 1) + 3 mod n

(using n rather than 0 when that arises), an unusual situation where the modulus
changes at each step. Beyond the initial data, you can see runs of 1, 4, 7, . . . or
2, 5, 8, . . .; the subtlety comes at the “breaks” and whether the next survivor is 1
or 2 (break numbers here include 4, 6, 9, 14, 21, 31, 47). The justification for the
recursive formula is that after player 3 dies, it is the n� 1 player game starting
at 4, so all labels are increased by 3.

In case participants ask, there is not really an exact formula for D(n). The
development of a direct formula for killing every second person is in the work-
sheet. The following formula is true, but it has a catch.

D(n) = 3n+ 1�
$


✓
3

2

◆dlog3/2
2n+1

 e
%

where b·c is the floor function, d·e is the ceiling function, and  = 1.6222705. . . .
The problem is that computing digits of  uses a recursive definition much like
the modular solution above. Until there is an independent computation of ,
this formula is essentially a repackaging of the former one.

Two survivors

In one version of the puzzle, Josephus has a confidant who also wants to survive
the intricate suicide pact. In what position should the confidant stand so that
he and Josephus are the last two soldiers standing? (This is where recording
the order of deaths would save work.)

n 1 2 3 4 5 6 7 8 9 10

D(n) 1 2 2 1 4 1 4 7 1 4
C(n) – 1 1 4 2 5 1 4 7 10

n 11 12 13 14 15 16 17 18 19 20

D(n) 7 10 13 2 5 8 11 14 17 20
C(n) 2 5 8 11 14 1 4 7 10 13

n 21 22 23 24 25 26 27 28 29 30

D(n) 2 5 8 11 14 17 20 23 26 29
C(n) 16 19 22 1 4 7 10 13 16 19

n 31 32 33 34 35 36 37 38 39 40

D(n) 1 4 7 10 13 16 19 22 25 28
C(n) 22 25 28 31 34 1 4 7 10 13

The recursive pattern is the same, C(n) ⌘ C(n� 1)+3 mod n, but knowing
D(n) (repeated in this table) does not seem to help one determine C(n) in
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general. The breaks occur at di↵erent places, the “runs” between them are of
di↵erent lengths, whether a run starts with 1 or 2 seems to be unrelated, etc.
It is true that D(n)� C(n) is constant during runs for both sequences.

A Di↵erent Skip Number

As another variation, one can compute the last survivor when killing every eighth
soldier. We will call this the “potato number” as in the title of the handout.

n 1 2 3 4 5 6 7 8 9 10

P (n) 1 1 3 3 1 3 4 4 3 1

n 11 12 13 14 15 16 17 18 19 20

P (n) 9 5 13 7 15 7 15 5 13 1

n 21 22 23 24 25 26 27 28 29 30

P (n) 9 17 2 10 18 26 7 15 22 29

n 31 32 33 34 35 36 37 38 39 40

P (n) 6 14 22 30 3 11 19 27 35 3

The recursive pattern is P (n) ⌘ P (n� 1)+8 mod n. Notice that the breaks
are much more frequent and runs can start on several values (in the table,
1, 2, 5, 7 at least—do all possible starting values occur?)

Additional Extensions

In case they are needed, here are two extension questions from the handout.

• Suppose in the game with 6 people, Josephus is person 1 but before the
game starts, the Roman leader says, “Hey Joey, you pick the skip number.”
What should he say so that he is the last person left?

Using a skip number of 60 will work for sure (see the next answer),
but the smallest number that will work is 3.

• Is it possible for Josephus to always come up with a response to the pre-
vious question no matter how many people are originally in the circle?

For the game with n people, using skip number k that is the least
common multiple of the numbers in {1, 2, 3, . . . , n} is guaranteed to work,
but there are typically much smaller values.

The following worksheet, “Exploring recursion with the Josephus Problem
(Or How to play ’One Potato, Two Potato’ for keeps)” by Doug Ensley and
James Hamblin, covers mostly the same material in a more sca↵olded way. It
appeared in the collection Resources for Teaching Discrete Mathematics: Class-
room Projects, History Modules, and Articles, edited by Brian Hopkins, pub-
lished by the Mathematical Association of America, 2009.
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Exploring recursion with the Josephus Problem
(Or How to play “One Potato, Two Potato” for keeps)

Douglas E. Ensley, Shippensburg University (deensley@ship.edu)
James E. Hamblin, Shippensburg University (jehamb@ship.edu)

Summary

The Josephus problem is addressed in many discrete mathematics textbooks as an exercise in
recursive modeling, with some books (e.g., [1] and [3]) even using it within the first few pages as an
introductory problem to intrigue students. Since most students are familiar with the use of simple
rhymes (like Eeny-meeny-miney-moe) for decision-making on the playground, they are comfortable
with the physical process involved in this problem. For students who may wish to pursue this topic
independently, [4] and [5] provide nice surveys and bibliographies, and the website [2] provides
web-based tools for exploring the problem directly. The activities presented here are intended to
be completed by students in a single class period early in the semester. We find that an opening
student-centered problem can get the class involved and set a good tone for the semester. Moreover,
we find that many issues arising from this particular problem can be built upon throughout the
course. The next section provides some suggestions for connections to other parts of the course.

Notes for the instructor

The Josephus problem can be explored through role playing or through carefully constructed pencil
and paper activities, depending on the amount of time one wishes to devote to it. We list below
some of the things we discuss just before the activity as well as some of the contexts in which we
have students revisit the problem later on.

• A good preliminary discussion on recursion can be initiated with the following problems.

a. Pose the question, “What is 1+2+3+ · · ·+19+20?” This provides a good opportunity
to share the creative idea of regrouping in order to sum 10 copies of 21 for a total of 210.

b. Followup with the question, “What is 1 + 2 + 3 + · · · + 20 + 21?” Some students will
try the regrouping trick, but at least one should point out that you can simply add 21
to the previous answer.

c. This idea of using a “similar but simpler” problem that has been solved previously is
the very essence of recursive thinking.

• The activities presented here have been written to be completed with paper and pencil, but
with the investment of more time one can have students act out the roles. This is a good
ice-breaking activity early in the semester, but it does take more time. Through role playing,
students will discover for themselves issues like “We need to remember who was first,” and
“We need a system for describing who is the last one left.”
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• There will be several opportunities later in a discrete mathematics course when one can reprise
the Josephus game as a source for exercises and motivational examples. Computer science
courses often use this problem as an exercise in recursive programming or in maintaining cir-
cular linked lists. Hence, with some cooperation from a friendly computer science instructor,
this problem can prove useful in more than one context.

a. (Mathematical induction) In the Josephus problem with skip number 2, prove that for
all integers n ≥ 0, if the game starts with 2n players, then the person in position 1 will
be the last person left. (This uses induction with the induction step involving the one
pass all the way around the circle for the first time in which the even numbered people
are eliminated.)

b. (Follow up) In the Josephus problem with skip number 2, if 0 ≤ k < 2n and the game
starts with 2n + k players, then the person in position 2k +1 will be the last person left.
This is a non-inductive argument consisting of removing the first k (even numbered)
people and then applying #1 to the remaining circle of size 2n.

c. (Binary representation of numbers) Define the cyclic left shift of a binary numeral b as
the number obtained from shifting the leading (i.e., leftmost) 1 bit to the rightmost end
of the numeral. For example, the cyclic left shift of the binary numeral 1001101 is the
numeral 0011011, which is the same as 11011. Show that if 0 ≤ k < 2n, then the cyclic
left shift of the binary representation of 2n + k is the binary representation of 2k + 1.
Hence, the cyclic left shift of a number m gives the last person left in the m person
Josephus game with skip number 2. This gives an “application flavor” to the study of
binary numbers that may make them more intriguing.

d. (Modular arithmetic) When introducing modular arithmetic, an analogy can be made
to the Josephus problem in which the original circle of people are numbered 0 through
n − 1. In particular, the patterns within the tables of “last person left” all have the
relationship “add k” but with the provision that the addition “wraps around the circle”
to refer to the actual people.
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Worksheet on Exploring recursion with the Josephus Problem
(Or How to play “One Potato, Two Potato” for keeps)

Introduction

Ancient mathematics problems that still hold their own are always fun to play with. A particularly
good one, which happens to be named for a first century historian, has its origins in the Jewish
- Roman war. The historian Flavius Josephus was apparently trapped by the Romans in a cave
with 40 fellow Jewish rebels. As good soldiers they decided on suicide rather than capture, so they
formed a circle and agreed that every third person would be killed until no one was left.

Josephus and a friend were more keen on being captured than their colleagues, so they quickly
found the spots to stand to ensure they were the two remaining at the end of the grisly proceedings.
Hence, the mathematically inept suffered an untimely demise while Josephus and his friend lived
to tell the tale.

This morbid story doesn’t seem like much of a game or puzzle, but it has the same basic
structure (with terminal consequences) as the age old way of choosing someone from a group: the
“one potato, two potato” algorithm. We will spend some time in class today playing this type of
game and analyzing our results.

Analyzing the Josephus Problem

In general, when we play the “Josephus game,” there will be a certain number of people standing
in a circle, and a “skip number” that tells us how many people to count before removing someone
from the circle. In the classical example described above, the number of people is 41 and the skip
number is 3.

Let’s look at a simpler example. This time, there will be only six people in the circle, but we
will keep the skip number at 3. We’ll continue to play until there is only one person remaining.
Let’s say the people, named Ann, Beth, Chris, Dave, Emma, and Fred, are arranged as shown in
Figure 1.
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Figure 1: Six people in a circle

In this case, we decide to start counting with Ann. We count Ann and Beth, and when we get to
the third person, Chris, he is removed from the circle. With Chris gone, we continue counting with
Dave. We count Dave and Emma, and when we get to Fred, he is eliminated from the circle. Now
there are four people left in the circle: Ann, Beth, Dave, and Emma, and the counting continues
with Ann. We count Ann and Beth, and then Dave is eliminated. The current situation is displayed
in Figure 2.

We next count Emma and Ann, and remove Beth, and the counting once again continues with
Emma. We count Emma, Ann, and then Emma is removed, so Ann is the person who is left
standing at the end.

An important thing to notice about this process is that we need to know which person to start
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Figure 2: Three people remain

the counting with at each step, including the first step. If we remove a couple of people and then
go on a coffee break, we might come back and forget who to resume the counting with.

For discussion: Can you think of a way that we could remember which person we
need to start the counting with at each step?
One solution is for us to put a funny hat on the person we need to start the counting with
at each step. In our diagrams, we will put a thick circle around the “starting person.”

Let’s try the game again, this time with seven people (named A, B, C, D, E, F, and G) and
removing every fifth person. Recall that we say that the“skip number” is equal to 5. Figure 3
shows diagrams illustrating how such a game progresses. Note that the players are removed in the
order E, C, B, D, G, A, and person F is the last one standing
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Start with A to be
counted first
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E was removed and F is
to be counted first
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C was removed and D is
to be counted first
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B was removed and
D is to be counted

first
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D was removed
and F is to be
counted first
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G was removed
and A is to be
counted first

Figure 3: The game with seven people

Exercise 1 On your own, play the Josephus game with n players and a skip number of k for each
of the following values. Determine who is the last person standing.

a. n = 6, k = 2 b. n = 10, k = 3 c. n = 11, k = 3
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Changing the Starting Player

What happens if we decide to keep the values of n and k the same, but change the person we start
the game with? How does this affect the outcome? Let’s go back to the example with seven people
and a skip number of 5. Let’s say the people are named Terry, Ursula, Vivian, Walter, Xander,
Yolanda, and Zack, and we want to start the game with Walter as Figure 4 shows.
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Figure 4: What’s in a name?

For discussion: In the game shown on the left in Figure 4, F is the last person standing.
Who will be the last person standing in the game shown on the right? Can you figure
it out without playing the entire game again?
If you said that Ursula would be the last person standing, you are correct! When we have
seven people and a skip number of 5, the last person standing is the sixth one around
the circle from the starting player. (Here we count the starting person as the first player
around the circle.) In mathematical notation, we will write this as J(7, 5) = 6.

The J(n, k) notation is very handy for describing the last person left in the Josephus game that
starts with n people in the circle and eliminates every kth one. For example, the result of our first
example can be described by simply writing J(6, 3) = 1.

Exercise 2 Go back to the three games you played in Exercise 1. Using the mathematical notation
we have defined, find the value of J(n, k) in each of the following cases.

a. J(6, 2) b. J(10, 3) c. J(11, 3)

Recursion: Using What Came Before

This idea of changing the starting player can be very helpful for finding patterns in the Josephus
problem. Consider the game with eight people and a skip number of 5, as shown in Figure 5. After
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Figure 5: Beginning the game with eight people

the first step of this game, E is eliminated from the circle, and we have the situation in Figure 6.

48



!

"

#

$

%

&

'

Figure 6: After person E is eliminated

Now what? Well, we continue to play the game as before, or we might notice that we have
seen this situation before. This is a game with seven players and a skip number of 5. We already
determined that the last person standing in this game is the sixth person around the circle from
the starting player. In this case, that means that C is the last person standing.

For discussion: Finish playing the game to verify that C is the last one standing.

Here is another example of this idea. In Exercise 2(c), you determined that J(11, 3) = 7. That
is, in a game with eleven people and a skip number of 3, the seventh person around the circle from
the starting person will be the last one standing. How does this help us determine the value of
J(12, 3)? Consider the first step of the game with twelve people and a skip number of 3. The first
person eliminated is person 3, and person 4 becomes the new starting player. Now there are eleven
people remaining, and we know that the last one standing will be the seventh person around the
circle starting with person 4. This is person 10. You can verify on your own that J(12, 3) = 10.

Finding the Pattern

There is a pattern to how the position of the last survivor changes as we change the number of
people initially standing in the circle. To see this pattern, we need to experiment and compute the
answer for many different examples. In the table in Exercise 3, the top row shows the number of
people in the circle, and the bottom row shows the position of the last person standing when the
skip number is 3. The values we have already determined are filled in for you.

Exercise 3 Fill in the rest of the table, either by playing each game or by appealing to the “using-
what-came-before” strategy.

n 3 4 5 6 7 8 9 10 11 12 13 14
J(n, 3) 1 7 10

a. What pattern do you notice in the table?

b. Can you explain in terms of the “using-what-came-before” strategy why this pattern holds?

c. On your own, make a similar table but change the skip number to 4. Can you predict what
pattern you will see?
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An easier variation

A game that’s a little better suited for detailed analysis is the variation where every second person
is eliminated — that is, the skip number is 2. The game will officially be played with people named
1, 2, . . . , n in a circle (with the numbers going clockwise). We go around the circle clockwise getting
rid of every second person (Person 2 is the first to go) until no one is left. For example, if we
start with four people, then the people are eliminated in the order 2, 4, 3, 1, so person 1 is the last
survivor.

We will let J(n) denote the last survivor in the game which starts with n people and has a skip
number of 2. (That is, we use J(n) instead of J(n, 2).)

Exercise 4 Fill in the rest of the table, either by playing each game or by appealing to the “using-
what-came-before” strategy.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
J(n) 1

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30
J(n)

a. How is the value of J(n) related to the value of J(n − 1)?

b. What will be the next value of n for which J(n) = 1?

c. How would you describe a formula for J(n) that would allow someone to quickly figure out
the last place in line given any n?

Josephus and his buddy

In the original story, Josephus actually escapes with a friend, so in reality he had to know the
positions of the last two survivors of this macabre game. To keep it simple, let’s still use the game
with skip number 2, but now we will use F (n) to denote the required position of the friend in the
Josephus game starting with n people.

Exercise 5 Play the Josephus game (with every second person eliminated, as above) for various
n and record the numbers J(n) and F (n) of the last person alive and of the next-to-the-last person
alive, respectively. Find more values than in the table below if you think it is helpful to do so.
Remember to try to use things you already know as you tackle larger and larger values of n.

n 12 13 14 15 16 17 18 19 20 21 22 23 24
J(n)
F (n)

a. How is the value of F (n) related to the value of F (n − 1)?

b. What will be the next value of n for which F (n) = 1?

c. Is there a direct relationship between J(n) and F (n)?
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Further questions for exploration

The following problems, as well as the ones above, can be explored with the applet found under
Section 1.1 on the website

http://webspace.ship.edu/∼deensley/DiscreteMath/flash/

Exercise 6 Fill in the following table using the “One potato, two potato” game on n people,
starting the first “one potato” on person 1. For those not familiar with this method of choosing a
person on the playground, this is simply the Josephus problem with every eighth person eliminated.
That is, in the table below we use P (n) to mean the same thing as J(n, 8) from the previous
discussion.

n 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
P (n)

a. If the students in this class stand in a circle in alphabetical order and do “one potato,
two potato”, who will be the last person left?

b. Suppose in the game with 6 people, Josephus is person 1 but before the game starts, the Roman
leader says, “Hey Joey, you pick the skip number.” What should he say so that he is the last
person left?

c. Is it possible for Josephus to always come up with a response to the previous question no
matter how many people are originally in the circle?
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Solutions

Exercise 1. We will use the conventions of labeling the people A, B, C, etc. clockwise around the
circle and starting our count with person A.

a. For n = 6 and k = 2, the last person left is E.

b. For n = 10 and k = 3, the last person left is D.

c. For n = 11 and k = 3, the last person left is G.

Exercise 2.

a. J(6, 2) = 5

b. J(10, 3) = 4

c. J(11, 3) = 7

Exercise 3. Here is the completed table:

n 3 4 5 6 7 8 9 10 11 12 13 14
J(n, 3) 2 1 4 1 4 7 1 4 7 10 13 2

a. For all n ≥ 2, person J(n, 3) is three more around (clockwise) the original circle from person
J(n − 1, 3).

b. If the kth person around the circle of n− 1 people is the last one remaining, then in the game
that starts with n people, after one person is eliminated the first person in the remaining
circle of n− 1 is person 4. The kth person in this circle, is the (k + 3)th person in the original
circle.

c. For all n ≥ 2, person J(n, 4) is four more around (clockwise) the original circle from person
J(n − 1, 4).

Exercise 4. Here is the completed table:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
J(n) 1 1 3 1 3 5 7 1 3 5 7 9 11 13 15 1

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30
J(n) 3 5 7 9 11 13 15 17 19 21 23 25 27 29

a. For all n ≥ 2, person J(n) is two more around (clockwise) the original circle from person
J(n − 1).

b. The next value of n for which J(n) = 1 will be n = 32. It appears that J(n) = 1 if and only
if n is a power of 2.

c. Given n people originally, let m be the smallest power of 2 less than or equal to n. Eliminate
people 2, 4, . . . , 2(n − m). This leaves the game with m people, the first of whom is person
2(n − m) + 1. According to the observation in part (b) of this exercise, this person will be
the last person left at the end of the entire process.

52



Exercise 5. Here is the completed table:

n 12 13 14 15 16 17 18 19 20 21 22 23 24
J(n) 9 11 13 15 1 3 5 7 9 11 13 15 17
F (n) 1 3 5 7 9 11 13 15 17 19 21 23 1

a. For all n ≥ 2, person F (n) is two more around (clockwise) the original circle from person
F (n − 1).

b. The next value of n for which F (n) = 1 will be n = 48. It appears that F (n) = 1 if and only
if n = 3 · 2k for some value of k ≥ 0.

c. J(n) − F (n) = 2k when the integer k can be chosen so that 3 · 2k−1 ≤ n < 2k+1, and
F (n) − J(n) = 2k when the integer k can be chosen so that 2k+1 ≤ n < 3 · 2k.

Exercise 6. Here is the completed table:

n 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
P (n) 1 9 5 13 7 15 7 15 5 13 1 9 17 2 10

a. This answer will depend on the number of people in your class. Suppose there are 32 people
in your class. Using the pattern of “adding 8” relative to the number in the circle, we find
that J(32, 8) = 17.

b. Using a skip number of 60 will work for sure (see the next answer), but the smallest number
that will work is k = 3.

c. For the game with n people, using k that is the least common multiple of the numbers in
{1, 2, 3, . . . , n} is guaranteed to work, but there are typically much smaller values.
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