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LINEAR AND 

QUADRATIC 

CHANGE 

A Problem from Japan 
Blake E. Peterson 

In the fall of 2003,1 had the opportunity to 

conduct some research on the student teach 

ing process in Japan. During my seven weeks 

of research at the junior high school affili 

ated with Ehime University in Matsuyama, 
Japan, I observed mathematics lessons taught by 
student teachers as well as many more lessons 

taught by experienced teachers. The basis for most 

of these lessons was wonderfully rich mathemat 
ics problems. In these lessons a problem was posed 
to students, time was given for them to explore 
it, and then a discussion of the solutions to the 

problem took place. A detailed description of 

similar problem-based lessons can be found in The 

Teaching Gap (Stigler and Hiebert 1999) and The 

Open-Ended Approach: A New Proposal for Teaching 
Mathematics (Becker and Shimada 1997). 

Some of the assets of these problems were the 

connections students were able to make and the 

variety of representations they were able to employ 
in solving them. For example, connections were 

made between tabular, graphical, and symbolic 

representations, between linear and quadratic 

equations, and between geometric behavior and 

algebraic functions. Over time, I began to realize 

that the richness of these problems had a great deal 
to do with the connections and representations that 

were such a prominent part of these lessons. 
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Many teachers in the United States are making 
efforts to incorporate the Process Standards from 
the Principles and Standards for School Mathemat 
ics (NCTM 2000) into the teaching and learning 
of mathematics in their classrooms. If students are 

only presented with routine exercises that focus 
on a narrowly defined skill, connections are diffi 
cult to make. Solving broad, open-ended problems, 
however, allows students to see connections as 

part of the problem-solving process. Open-ended 
problem-solving situations also afford students the 

opportunity to use various representations as they 
solve the problem and communicate their solution 
to their peers. 

Rich problems, like the ones I observed being 
used in Japan, are excellent sources about which 
to build lessons that incorporate the Process Stan 
dards of problem solving, connections, and repre 
sentations. In this article, I begin by introducing 
a favorite from among the problems that I saw 

used by my colleagues in Japan and then go on to 
describe how this problem plays out in the class 
room. Common student approaches to the problem 
will be presented, along with a discussion of where 
it might fit in the curriculum. 

This problem is centered on the numerical and 

graphical behavior of linear and quadratic functions 
and is designed to encourage students to use tables 
and graphs on their way to describing geometric 
behavior symbolically. This problem asks students 
to describe the change in attributes of a sequence of 

geometric figures. Some attributes change linearly, 
and others change in a quadratic pattern. The con 
versations about the differences between linear and 

quadratic behavior allow students to make many of 
the types of connections described above. 

LINEAR AND NONLINEAR GROWTH 
This problem, which I saw used in a ninth-grade 
mathematics classroom in Japan, seems most 

appropriate for an algebra 2 class in the United 
States. Because it generates some linear and some 

quadratic solutions, it would be a nice problem 
for students after they have become familiar with 
both linear and quadratic equations. However, I 
used it in an algebra 2 class just before students 

began their study of quadratic equations and found 
it to be excellent for revisiting the concept of lin 
ear functions and also for motivating a discussion 
about nonlinear (quadratic) functions. 

If this problem is introduced prior to a study of 

quadratic equations, students initially only see cases 
as linear and not linear. They are unsure what type 
of equation to use to describe the observed nonlin 
ear situation. Because the nonlinear examples from 
this problem are quadratic, when I refer to nonlin 
ear behavior, quadratic is implied. 

Preliminary question: In the figure, as the step 
changes. also changes. 

D 
Step Step Step 

1 2 3 

Fiq. 1 What attributes change as the step increases? 

Since most textbooks present students with equa 
tions and ask them to create a table and a graph 
from the equation, they think about linear and qua 
dratic equations as first-degree equations with one 

variable and second-degree equations with one vari 

able, respectively. Students may also visualize the 

graph of a line or a parabola, but they make connec 
tions between these representations and their cor 

responding tables far less often. In the problem pre 
sented here, students describe a geometric pattern 
by first building a table of values, then constructing 
the graph of those values, and finishing with an 

equation. This order, which differs from that of 
most textbook problems, allows students to make 
the connection between the table and other repre 
sentations more readily. They can also compare the 
tabular values generated by a linear equation with 
those generated by a quadratic equation. 

The following list gives some examples of 

responses to the preliminary question (see fig. 
1) from students in both the Japanese ninth 

grade classroom and the United States algebra 2 
classroom: 

perimeter 
height 
width 
size of enclosing rectangle 
number of "toothpicks" 
number of interior toothpicks 
number of intersections 
number of corners 
number of convex corners 

number of squares 
number of nonadjacent squares 
number of right angles 
sum of the interior angles 
number of diagonals 
leftover space 
number of segments 
number of parallel lines 

length of longest line 
number of rectangles 
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As students generate a list of answers, questions of 
clarification need to be posed, such as "What do you 
mean by 'toothpicks'?" "What do you mean by dum 
ber of squares'? Do you mean squares of any size?" 
"Are the diagonals only across one small square 
or can they cross multiple squares?" "Do intersec 
tions include points where two toothpicks meet or 

just where four toothpicks meet?" Each student or 

group of students may have their own answers to 

these questions, but it becomes their responsibility to 

define specifically what they are considering. 
Once a list of changing attributes is identified, stu 

dents are asked to describe the change in one attribute: 

Problem: Using a table, a graph, and an equa 
tion, describe the step-by-step change observed 
in figure 1. 

Fiq. 3 The number of "inside" right angles is four times the number of blocks. 

The solutions to this problem tend to fall into two 

general categories: linear and quadratic. As tables are 

constructed, the students are quickly able to identify 
patterns that are linear and patterns that are not lin 
ear. We will first look at some nonlinear (quaflratic) 
examples and then some linear examples. 

Quadratic 

Many of the attributes in the list above generate 

quadratic growth. Those considered by students in 
the United States include total blocks or area, the 
number of inside right angles, leftover space, and 
the number of toothpicks. 

Total blocks or area: The total number of blocks, 
or 1 1 squares, is the same as the area of the figure. 
One group of students saw this attribute as the total 
blocks and created the table, graph, and equation 
shown in figure 2. In this example, generating a 

table of values highlights a pattern that is readily rec 

ognized as perfect squares (see lower right-hand cor 
ner of fig. 2). Thus, the equation likely comes from 
the ability to recognize a numerical pattern rather 
than from any knowledge of quadratic functions. 

Notice that although the problem situation has a 

domain of natural numbers, this group constructed 
a graph that is continuous with a domain of 

positive real numbers. All other groups, including 
groups from Japan, made the same generalization. 
My Japanese colleagues and I chose not to pursue 
this distinction, but it could easily become a rich 

point of discussion. 

The number of inside right angles: If the number 
of right angles is investigated, the first question that 
must be resolved is whether to count the right angles 
on the outside of the figures. One group of students 
chose to consider only the interior right angles. Since 
each lxl square in the figure has four right angles 
in it, the total number of inside right angles is four 
times as big as the number of 1 1 squares. 

The group that chose this approach has all three 

representations clearly displayed, as can be seen in 

figure 3. Based on observations, I believe that the 

students were able to generate their equation by look 

ing at the numerical pattern in the table. It is interest 

ing to note that these students had not been formally 
introduced to quadratic equations at the time they 

were presented with this problem; thus, it is unlikely 
that the quadratic equations were generated from a 

knowledge of the behavior of quadratic functions. 

The leftover space: Leftover space is determined 

by constructing a rectangle around each figure and 

computing the number of squares in the rectangle 
that are not part of the original figure. Although 
the change in this attribute is modeled by a qua 
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dratic function, the students are able to focus on 
the geometry of the problem in order to generate an 

equation without any formal knowledge of these 
nonlinear functions. The student work in figure 4 

highlights how the geometry of this attribute can be 

quite readily understood. 
In the previous cases of the total number of 

blocks and the number of right angles, the function 
was easily generated by observing the numerical 

pattern in the table, but in this case the numerical. 
pattern is more difficult to identify. The geometric 
pattern, on the other hand, can shed a great deal of 

light on the function. In the student work (fig. 4), 
the leftover space is rearranged to form a rectangle. 
This can be seen more clearly in figure 5. 

As the step increases, the leftover space is in 
the shape of two inverted staircases. Each stair 
case height and width increases by one as the step 
increases. The staircases are placed together as 
shown in figure 5 to form a rectangle. Thus, the 
leftover space for step 2 forms a 1 x 2 rectangle; the 
leftover space for step 3 can be rearranged to form a 
2x3 rectangle; and the leftover space for step 4 can 
be rearranged into a 3 4 rectangle. The equation 
for the area of this new rectangle becomes the func 
tion that describes this attribute. Thus, the equa 
tion of the area of the leftover space is A = x(x 

- 
1) 

where is the step number. After using geometry 
to generate the equation, connections can be made 
between the quadratic function and the numerical 

pattern in the table by verifying that the equation 
does, in fact, generate the values in the table. 

The number of toothpicks: If each of the original fig 
ures is viewed as being constructed with toothpicks, 
then generating a function that counts the number of 

toothpicks for a given step can be an interesting and 

challenging problem. In this case, the students created 
a table (see fig. 6) and quickly recognized that it was 
not linear because the differences between the values 
in the sequence 4,13,26,43,64,... are not constant. 

The pattern, however, is difficult to identify numeri 

cally as well as geometrically, and the students were 
unsure of the type of function that could describe the 
pattern. Since a linear function would have constant 
differences between successive terms, they concluded 
that the function must have some type of x2 term in 
it. From that point, they used a guess-and-test method 
to create a function that would match the inputs and 

outputs in the table. In the guess-and-test process, they 
had a 2x* term and changed it to a 3x* term, only to 
realize that the function grew too quickly. Therefore, 
they went back to the Ix2 term and added an term to 

make their equation of the form y = Zx2 + +1. Next 

they used guess-and-test approach on the coefficient of 
the and the constant term in order to find the appro 
priate equation of Zx2 + 3x - 1. 

Fig. 4 "Leftover space" requires a slightly more sophisticated approach. 

Step 2 Step 3 Step 4 

Fig. 5 Leftover space can be arranged to form rectangles. 

Fig. 6 This group used guess and check to arrive at a quadratic equation. 

A slightly more sophisticated approach to this 

problem would be to count systematically the 
number of vertical toothpicks and the number of 
horizontal toothpicks. Some students began varia 
tions on this approach but struggled to put all of 
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Table 1 

Counting Toothpicks 

Step Vertical Toothpicks 

1 + 1 

1+2+2+1 

1+2+3+3+2+1 

1+2+3+4+4+3+2+1 
= 2(1 + 2 + 3 + 4) 

.2(1 + 2 + 3 + 
? + ?) 

Horizontal Toothpicks 

1 + 1 

1 + 3 + 3 

1+3+5+5 

1+3+5+7+7 
= (l + 3 + 5 + 7) + 7 

(1 + 3 + 5+- -+(2?-1)) 
+ (2fl-l) 

Total 

13 

26 

43 

Fig. 7 The length of the base is a linear function of step number. 

the pieces together in the time allotted in order to 

find the resulting equation. For clarification of the 

solution to this problem, a summary of this count 

ing method is shown in table 1. In the table, the 

vertical columns are counted left to right, and the 

horizontal rows are counted top to bottom. 
Since the sum of the first integers is 

n{n +1) 

the number of vertical toothpicks becomes 

_. ( + ) , . 2 
2| 

?- 
\ 
= n{n + l) = n2 + n. 

It is also known that the sum of the first odd integers 
is w2, so the number of horizontal toothpicks is n2 + 

2n - 1. Adding the number of vertical and horizontal 

toothpicks yields ( 
2 + ) + ( 

2 + 2n - 1) = 2n2 + 3n -1. 

Summary: In each case that generated a quadratic 
equation, students constructed a table by looking at 

the geometric figure. They quickly recognized that 

the pattern in the table was not linear because the 
differences between consecutive outputs were not 

constant. Since they had not yet been introduced 
to quadratic equations, they did not know what to 

call the pattern other than "not linear." In the case 

of the total number of blocks and total right angles, 

perfect squares could be recognized in the table of 

values, and an equation followed. In the case of the 
leftover space, numerical patterns were not easily 
seen, but a pattern in the geometry of the shapes led 
to an equation. In the final case of the number of 

toothpicks, neither of the previous methods proved 
to be productive. Thus, students hypothesized that 

the equation contained a term to the second degree 
and used guess and test from that point. 

In every case, students started with a physical 
situation and created a table on their way to writ 

ing an equation. Since this order is different from 

what is usually found in textbooks, it should help 
students move more flexibly, in either direction, 
between different representations. 

Linear 
The first of the two linear examples was generated 
directly from looking at the length of the base. The 

second example evolved from a group of students 

struggling to describe the leftover space because it 
was not linear; instead, they described the change 
in the leftover space. 

Length of the hose: When considering how the 

length of the base changes as the step changes, the 

table, graph, and equation shown in figure 7 are 

generated. Students can clearly see from the table 

of values that the y values are increasing by 2 each 
time the values increase by 1. Recognizing that 

the constant differences are indicative of the slope 
of a line is a valuable connection. This recognizable 
linear behavior implies that the slope of the equa 
tion is 2. The corresponding equation, y = 2x - 1, 

easily follows. 

Change of the leftover space: In the quadratic 

examples, one of the groups had considered the 

leftover space (see fig. 4). A second group also 

investigated the leftover space and, in their notes, 

generated the table shown in figure 8. When the 

students looked at the leftover space (0, 2, 6,12, 

20, 30,...) and differences in the leftover space 

(2, 4, 6, 8 ,10,...), they realized that the leftover 

space was not changing linearly because the differ 
ences were not constant. When they looked at the 

difference of the differences (2, 2, 2, 2,...), how 

ever, they noticed a constant change, indicating a 

linear pattern. Thus, they created their poster (see 

fig. 9) to describe the behavior of the change in the 

leftover space instead of the behavior of the left 
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Fiq. 8 Second differences are constant when computing 
leftover space. 

over space. In the poster, they consolidated their 
table to show only the step and the change in the 
leftover space, which would be described by the 
linear equation y = 2x - 2. 

In the discussion of these solutions with students, 
a natural progression could be to start the group of 
linear solutions and then continue with the quadrat 
ics. The last case, the change in the leftover space, 
however, follows better after a discussion of the 
leftover space. For this reason, I reversed the order I 

might typicallyjfollow 
in a classroom. 

A JAPANESE COMPARISON 
In Japan, I saw this problem taught in a ninth-grade 
classroom of forty students working in groups of 
four. The class worked on this problem for two 
and a half 50-minute periods. The students spent 
the first day deciding which changing attribute to 

investigate and formalizing their thinking. By the 
end of the first day, a few of the ten groups had pre 
sented their solutions. The remainder of the solu 
tions were presented on the second day of the les 
son. On the beginning of the third day, the teacher, 

Ms. Sunada, discussed some generalizations about 
linear and quadratic functions. 

The Japanese student solutions were similar to 
those of the U.S. students and fell into the same 
two categories of linear and nonlinear functions. 

Japanese students also looked at the total number of 

triangles created by cutting each square in half and 
at the total number of triangles in the leftover space. 
The triangle ideas came from a suggestion made by 
a student early in the discussion and got the whole 
class thinking about triangles. The reasoning needed 
to investigate these situations, however, is the same 
as what U.S. students had to use. Some of the other 
attributes the Japanese students investigated were 
the number of triangles with no exterior edge, the 

maximum number of nonadjacent squares, and the 
sum of interior angles around the perimeter of the 

polygon that was formed by the squares. 
As the Japanese students presented their solu 

tions, they were encouraged by the teacher to share 
how they found the equation. Ms. Sunada was very 

-i? ?s?I_< > 

Y?*?5 IS ^^IPt 

Fig. 9 The linear function for change in leftover space 

careful to push them to justify how each component 
of their equation related to the figure and numerical 

patterns. For example, when one group of students 
looked at the sum of the interior angles and generated 
the equation y = 360 + 720(x 

- 
1), she asked them 

why it was - 1 instead of just x. The discussion of 
student solutions also focused on similarities and 
differences between the solutions. Ms. Sunada orga 
nized the presentations of the solutions so these simi 
larities and differences would become more obvious. 

CONCLUSION 
The problem presented here is centered on the 

representations of tables, graphs, and equations. 
In addition, the problem was placed in a geometric 
context, which is yet another representation. The 
observation of patterns in the geometric situations 
and the subsequent conversion of these patterns to 

graphs and equations is also fertile ground for stu 
dents to make connections. 

For the purpose of making connections, "prob 
lem selection is especially important because stu 
dents are unlikely to learn to make connections 

Vol. 100, No. 3 ? October 2006 | MATHEMATICS TEACHER 211 

This content downloaded from 142.150.190.39 on Sun, 19 Jan 2014 18:19:15 PM
All use subject to JSTOR Terms and Conditions



unless they are working on problems or situa 
tions that have the potential for suggesting such 

linkages" (NCTM 2000, p. 359). The problem 
presented here is particularly nice because the 
connections occur naturally in the problem-solv 
ing process, allowing students to make them 

without being told precisely what to look for. In 

Japan and the United States, the attributes that 
the students selected, the representations they 
used, and the connections they made were all 
similar. The learning that occurred was not an 

artifact of the language or the cultur?; it was a 

product of the rich mathematical problem in 
which they all engaged. 
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