Reflecting on Practice: Mathematics and Motivation

Session 1 PCMI Outreach

In your notebook, write down what you think are the characteristics of a good math student.

Characteristics of a Good Math Student

RoP: Student Motivation

Teachers will leave with a framework for thinking about motivation & strategies to help students want to engage with mathematics.

Specifically, we will focus on:

- Meaningfulness
- Belongingness
- Accountability

Introduce yourself to the rest of your table. Share:

- Name
- School
- Where you're from
- Grades and courses you teach
- What is your <u>favorite</u> number and why?

"All math word problems sound to me like 'You have 3 space helmets and you want to buy 5 albino alpacas. How many miles will it take?' I don't know what to do because alpacas don't wear space helmets."

$$3X + 5y = 15$$

What do you notice?

$$3X + 5Y = 15$$

What do you notice? What do you wonder?

$$3x + 5y = 15$$

Imagine that your goal for the day would be for students to figure out x and y intercepts.

As a teacher, where do you go from here?

 Why is asking "what do you notice?" a good idea?

 Why is asking "what do you wonder?" a good idea?

 What are some challenges to making Noticing and Wonderings work in your classroom? How would you deal with these challenges in your classroom?

Noticing and wondering

- Can be done in mathematical contexts as well as in "rich" interesting contests; What do you notice? and What do you wonder?
- Can typically be done with minimal risk
- If you structure the way you use "What do you wonder about?", students' ideas can lead to the mathematics related to the goal you want to investigate
- Used every day might lead to boredom & gaming the strategy

Solve the system of equations

$$x + 2y = 3$$

 $4x + 5y = 6$

Solve the system of equations

$$x + 2y = 3$$

$$4x + 5y = 6$$

And this one

$$7x + 8y = 9$$

 $10x + 11y = 12$

What do you notice and wonder about the relationship between the two systems?

Solve the system of equations

$$x + 2y = 3$$

$$4x + 5y = 6$$

And this one

$$7x + 8y = 9$$

$$10X + 11Y = 12$$

on your whiteboard with your noticings and wonderings

Use one of the wonderings/conjectures made by your group and create a convincing argument that the conjecture is true.

Write your conjecture on your whiteboard and make sure to show your work:)

How does this diagram relate to the work we just did?

Horn, 2017

Take a few minutes at your table and discuss the question:

 How might approaching problems that provoke student curiosity give more students options to be part of the mathematical conversation?

Reflect back on the characteristics of a math student you wrote down earlier today. Do they connect to the diagram in any way? Should they?

References

- Horn, Ilana (2017). Motivated: Designing classrooms where students want to join in. Heinemann
- The "What do you notice, what do you wonder" strategy originally came from Annie Fetter at the Math Forum.

